Keys
To perform actions using an account and private-public key pairs with feather.js, you need an implementation of the Key class, which provides an abstraction around the signing functions of an account. There are multiple implementations available:
You can also create a custom signing solution by extending the base Key
class.
RawKey
The most basic implementation of a Key
is a RawKey
, which is created using a plain private key. RawKey
wraps the 32 bytes of a private key and supplies a corresponding public key:
_9import { RawKey } from '@terra-money/feather.js';_9import { randomBytes } from 'crypto';_9let see = console.log;_9_9const raw_key = new RawKey(randomBytes(32));_9_9see(raw_key.publicKey); // SimplePublicKey { key: 'AlNdglClnFJMwdeFGlfFTAwbx7rxKxWbgN/lwj5mQ3vw' }_9see(raw_key.privateKey); // <Buffer 53 e2 53 0b 29 c4 9d 54 b3 66 a4 61 7b d3 e2 6e 4c e5 41 cd 12 a6 e9 27 8a 97 61 1c 55 6e cd 4c>_9see(raw_key.accAddress('terra')); // terra1ptj88nsljjr9agx07hahu6etv43acksy2q44sd
MnemonicKey
A MnemonicKey
derives itself from a 24-word BIP-39 mnemonic as opposed to the bytes of a private key.
A MnemonicKey
has various levels of definition:
- Supply no arguments for the mnemonic to be randomly generated (effectively generating a random key).
- Supply only a 24-word BIP-39 mnemonic to generate a corresponding key.
- Supply a full HD path (using either a random or specified mnenomic).
_29import { MnemonicKey } from '@terra-money/feather.js';_29const see = console.log;_29_29const MNE_KEY_RANDOM = new MnemonicKey();_29_29see(MNE_KEY_RANDOM.mnemonic); // famous { ... } myth world size_29see(MNE_KEY_RANDOM.privateKey); // <Buffer 4f e5 { ... } 51 a4 41 9c>_29see(MNE_KEY_RANDOM.publicKey); // SimplePublicKey { key: 'A8TNSJhn6gGHgY2ohJnkOaZz7Y0FaW/QeytGBaqCLIJU' }_29see(MNE_KEY_RANDOM.accAddress('terra')); // terra1l63e8q7yjyd77qanwfgvl43ulagf34a2xzcuv4_29_29const MNE_KEY_EXACT = new MnemonicKey({_29 mnemonic:_29 'squirrel future level fan world organ daring thing color orange sausage cross fault interest blast wink audit unfair satoshi solution track indoor sun edit',_29});_29_29const MNE_KEY_RANDOM_WITH_HD_PATH = new MnemonicKey({_29 // mnemonic: '', // optional, will be random if not provided_29 coinType: 330, // optional, default_29 account: 0, // optional, default_29 index: 0, // optional, default_29});_29_29const MNE_KEY_FULLY_RESOLVED = new MnemonicKey({_29 mnemonic:_29 'squirrel future level fan world organ daring thing color orange sausage cross fault interest blast wink audit unfair satoshi solution track indoor sun edit',_29 coinType: 330,_29 account: 0,_29 index: 0,_29});
Specifying an HD path
The MnemonicKey
can be used to recover a wallet with a particular BIP44 HD path: m/44'/${coinType}'/${account}'/0/${index}
.
As per the Cosmos HD Key Derivation spec:
Cosmos blockchains support hierarchical deterministic key generation (HD keys) for deriving multiple cryptographic keypairs from a single secret value. This allows the user to use different keypairs for different accounts on one blockchain and create accounts on multiple blockchains without having to manage multiple secrets.
For example, to recover a mnemonic with the old Terra wallet HD path using coin type for ATOM (118):
_4const mne_key = new MnemonicKey({_4 mnemonic: '[ Your BIP39 mnemonic ]',_4 coinType: 118, // <--------- Cosmos' coin type ( Terra had inherited initially )_4});
-
Coin Type Numbers
330
and118
above refer to 'coin-types' for theTerra
andCosmos
blockchains respectively. These numbers are defined according to the BIP044 standard. You can find more information here.
Custom key implementation
If you need to write your own key management solution, you will need to subclass the abstract Key
class and provide your own signing function. Instead of exposing details pertaining to your private key, you can specify a sign()
function that forwards the signing request to a server or to a hardware wallet. The remaining functions related to signing (createSignature()
and signTx()
) are automatically provided and use sign()
underneath.
The following code listing is close to the implementation of RawKey
, which illustrates how to write a custom Key
:
_33import SHA256 from 'crypto-js/sha256';_33import * as secp256k1 from 'secp256k1';_33import { Key } from '@terra-money/feather.js';_33_33/**_33 * An implementation of the Key interfaces that uses a raw private key._33 */_33export class NaiveCustomImplementation extends Key {_33 /**_33 * Raw private key, in bytes._33 */_33 public privateKey: Buffer;_33_33 constructor(privateKey: Buffer) {_33 const publicKey = secp256k1.publicKeyCreate(_33 new Uint8Array(privateKey),_33 true,_33 );_33 super(new SimplePublicKey(Buffer.from(publicKey).toString('base64')));_33 this.privateKey = privateKey;_33 }_33_33 public sign(payload: Buffer): Promise<Buffer> {_33 const hash = Buffer.from(SHA256(payload.toString()).toString(), 'hex');_33 const { signature } = secp256k1.ecdsaSign(_33 Uint8Array.from(hash),_33 Uint8Array.from(this.privateKey),_33 );_33 return new Promise(() => {_33 Buffer.from(signature);_33 });_33 }_33}
Note that you must call super()
with the public key to generate the relevant account and validator public keys associated with your key.